Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 286(11): 2099-2117, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851224

RESUMO

Autoxidation of polyunsaturated fatty acids (PUFAs) damages lipid membranes and generates numerous toxic by-products implicated in neurodegeneration, aging, and other pathologies. Abstraction of bis-allylic hydrogen atoms is the rate-limiting step of PUFA autoxidation, which is inhibited by replacing bis-allylic hydrogens with deuterium atoms (D-PUFAs). In cells, the presence of a relatively small fraction of D-PUFAs among natural PUFAs is sufficient to effectively inhibit lipid peroxidation (LPO). Here, we investigate the effect of various D-PUFAs on the stability of liposomes under oxidative stress conditions. The permeability of vesicle membranes to fluorescent dyes was measured as a proxy for bilayer integrity, and the formation of conjugated dienes was monitored as a proxy for LPO. Remarkably, both approaches reveal a similar threshold for the protective effect of D-PUFAs in liposomes. We show that protection rendered by D-PUFAs depends on the structure of the deuterated fatty acid. Our findings suggest that protection of PUFAs against autoxidation depends on the total level of deuterated bi-sallylic (CD2 ) groups present in the lipid bilayer. However, the phospholipid containing 6,6,9,9,12,12,15,15,18,18-d10 -docosahexaenoic acid exerts a stronger protective effect than should be expected from its deuteration level. These findings further support the application of D-PUFAs as preventive/therapeutic agents in numerous pathologies that involve LPO.


Assuntos
Antioxidantes/farmacologia , Deutério/química , Ácidos Graxos Insaturados/farmacologia , Bicamadas Lipídicas/metabolismo , Simulação por Computador , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Ácidos Graxos Insaturados/química , Peroxidação de Lipídeos/efeitos dos fármacos , Lipossomos , Modelos Químicos , Estrutura Molecular , Método de Monte Carlo , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos/síntese química , Fosfolipídeos/metabolismo , Relação Estrutura-Atividade
2.
Molecules ; 23(12)2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558277

RESUMO

The synthesis of signal lipids, including eicosanoids, is not fully understood, although it is key to the modulation of various inflammatory states. Recently, isotopologues of essential polyunsaturated fatty acids (PUFAs) deuterated at bis-allylic positions (D-PUFAs) have been proposed as inhibitors of non-enzymatic lipid peroxidation (LPO) in various disease models. Arachidonic acid (AA, 20:4 n-6) is the main precursor to several classes of eicosanoids, which are produced by cyclooxygenases (COX) and lipoxygenases (LOX). In this study we analyzed the relative activity of human recombinant enzymes COX-2, 5-LOX, and 15-LOX-2 using a library of arachidonic acids variably deuterated at the bis-allylic (C7, C10, and C13) positions. Kinetic parameters (KM, Vmax) and isotope effects calculated from kH/kD for seven deuterated arachidonic acid derivatives were obtained. Spectroscopic methods have shown that deuteration at the 13th position dramatically affects the kinetic parameters of COX-2 and 15-LOX-2. The activity of 5-LOX was evaluated by measuring hydroxyeicosatetraenoic acids (8-HETE and 5-HETE) using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Deuteration at the seventh and 10th positions affects the performance of the 5-LOX enzyme. A flowchart is proposed suggesting how to modulate the synthesis of selected eicosanoids using the library of deuterated isotopologues to potentially fine-tune various inflammation stages.


Assuntos
Ácidos Araquidônicos/biossíntese , Ácidos Araquidônicos/farmacologia , Deutério/química , Inflamação/patologia , Araquidonato 15-Lipoxigenase/metabolismo , Ácidos Araquidônicos/química , Ciclo-Oxigenase 2/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Cinética
3.
Nat Chem Biol ; 14(5): 507-515, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610484

RESUMO

Ferroptosis is a non-apoptotic form of regulated cell death caused by the failure of the glutathione-dependent lipid-peroxide-scavenging network. FINO2 is an endoperoxide-containing 1,2-dioxolane that can initiate ferroptosis selectively in engineered cancer cells. We investigated the mechanism and structural features necessary for ferroptosis initiation by FINO2. We found that FINO2 requires both an endoperoxide moiety and a nearby hydroxyl head group to initiate ferroptosis. In contrast to previously described ferroptosis inducers, FINO2 does not inhibit system xc- or directly target the reducing enzyme GPX4, as do erastin and RSL3, respectively, nor does it deplete GPX4 protein, as does FIN56. Instead, FINO2 both indirectly inhibits GPX4 enzymatic function and directly oxidizes iron, ultimately causing widespread lipid peroxidation. These findings suggest that endoperoxides such as FINO2 can initiate a multipronged mechanism of ferroptosis.


Assuntos
Apoptose , Glutationa Peroxidase/fisiologia , Ferro/química , Animais , Carbolinas/química , Linhagem Celular Tumoral , Colorimetria , Dioxolanos/química , Retículo Endoplasmático/metabolismo , Glutationa/química , Glutationa Peroxidase/química , Homeostase , Humanos , Peroxidação de Lipídeos , Camundongos , Microssomos/metabolismo , NADP/química , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Piperazinas/química , Engenharia de Proteínas , Relação Estrutura-Atividade
4.
Free Radic Biol Med ; 82: 63-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25578654

RESUMO

Polyunsaturated fatty acid (PUFA) peroxidation is initiated by hydrogen atom abstraction at bis-allylic sites and sets in motion a chain reaction that generates multiple toxic products associated with numerous disorders. Replacement of bis-allylic hydrogens of PUFAs with deuterium atoms (D-PUFAs), termed site-specific isotope reinforcement, inhibits PUFA peroxidation and confers cell protection against oxidative stress. We demonstrate that structurally diverse deuterated PUFAs similarly protect against oxidative stress-induced injury in both yeast and mammalian (myoblast H9C2) cells. Cell protection occurs specifically at the lipid peroxidation step, as the formation of isoprostanes, immediate products of lipid peroxidation, is drastically suppressed by D-PUFAs. Mitochondrial bioenergetics function is a likely downstream target of oxidative stress and a subject of protection by D-PUFAs. Pretreatment of cells with D-PUFAs is shown to prevent inhibition of maximal uncoupler-stimulated respiration as well as increased mitochondrial uncoupling, in response to oxidative stress induced by agents with diverse mechanisms of action, including t-butylhydroperoxide, ethacrynic acid, or ferrous iron. Analysis of structure-activity relationships of PUFAs harboring deuterium at distinct sites suggests that there may be a mechanism supplementary to the kinetic isotope effect of deuterium abstraction off the bis-allylic sites that accounts for the protection rendered by deuteration of PUFAs. Paradoxically, PUFAs with partially deuterated bis-allylic positions that retain vulnerable hydrogen atoms (e.g., monodeuterated 11-D1-Lin) protect in a manner similar to that of PUFAs with completely deuterated bis-allylic positions (e.g., 11,11-D2-Lin). Moreover, inclusion of just a fraction of deuterated PUFAs (20-50%) in the total pool of PUFAs preserves mitochondrial respiratory function and confers cell protection. The results indicate that the therapeutic potential of D-PUFAs may derive from the preservation of mitochondrial function.


Assuntos
Antioxidantes/farmacologia , Ácidos Graxos Insaturados/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Animais , Linhagem Celular , Respiração Celular , Deutério , Metabolismo Energético , Ácido Etacrínico/farmacologia , Peroxidação de Lipídeos/fisiologia , Ratos , Relação Estrutura-Atividade , terc-Butil Hidroperóxido/farmacologia
5.
Org Lett ; 16(17): 4590-3, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25156193

RESUMO

Azide and phosphoramidite functions were found to be compatible within one molecule and stable for months in solution kept frozen at -20 °C. An azide-carrying phosphoramidite was used for direct introduction of multiple azide modifications into synthetic oligonucleotides. A series of azide-containing oligonucleotides were modified further using click reactions with alkynes.


Assuntos
Azidas/síntese química , Oligonucleotídeos/síntese química , Compostos Organofosforados/síntese química , Alcinos/química , Azidas/química , Química Click , Estrutura Molecular , Oligonucleotídeos/química , Compostos Organofosforados/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...